S . •

IEEE Std 80-2000 .

IEEE GUIDE FOR SAFETY

Description	Material conductivity (%)	α, factor at 20 °C (1/°C)	<i>K_o</i> at 0 °C (0 °C)	Fusing ^a temperature T _m (°C)	ρ , 20 °C (μΩ· cm)	TCAP thermal capacity [J/(cm ^{3,°} C)]
Copper, annealed soft-drawn	100.0	0.003 93	234	1083	1.72	3.42
Copper, commercial hard-drawn	97.0	0.003 81	242	1084	1.78	3.42
Copper-clad steel wire	40.0	0.003 78	245	1084	4.40	3.85
Copper-clad steel wire	30.0	0.003 78	245	1084	5.86	3.85
Copper-clad steel rod ^b	20.0	0.003 78	245	1084	8.62	3.85
Aluminum, EC grade	61.0	0.004 03	228	657	2.86	2.56
Aluminum, 5005 alloy	53.5	0.003 53	263	652	3.22	2.60
Aluminum, 6201 alloy	52.5	0.003 47	268	654	3.28	2.60
Aluminum-clad steel wire	20.3	0.003 60	258	657	8.48	3.58
Steel, 1020	10.8	0.00160	605	1510	15.90	3.28
Stainless-clad steel rod ^c	9.8	0.001 60	605	1400	17.50	4.44
Zinc-coated steel rod	8.6	0.003 20	293	419	20.10	3.93
Stainless steel, 304	2.4	0.001 30	749	1400	72.00	4.03

^aFrom ASTM standards.

^bCopper-clad steel rods based on 0.254 mm (0.010 in) copper thickness. ^cStainless-clad steel rod based on 0.508 mm (0.020 in) No. 304 stainless steel thickness over No. 1020 steel core.

Equation (37) and Equation (38), in conjunction with Equation (39) (which defines TCAP), reflect two basic assumptions

- That all heat will be retained in the conductor (adiabatic process). a)
- That the product of specific heat (SH) and specific weight (SW), TCAP, is approximately constant b) because SH increases and SW decreases at about the same rate. For most metals, these premises are applicable over a reasonably wide temperature range, as long as the fault duration is within a few seconds.

Copyright © 2000 IEEE. All rights reserved.